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The theory  of  partitions has interested some of  the best minds since the 18
th

 

century. In 1742, Leonhard Euler established the generating f unction of  P(n). 
Godf rey  Harold Hardy  said that Sriniv asa Ramanujan was the f irst, and up to 

now the only , mathematician to discov er any  such properties of  P(n). In 1981, S. 

Barnard and J.M. Child stated that the diff erent ty pes of  partitions of  n in 
sy mbolic f orm. In this paper, diff erent ty pes of  partitions of  n are also explained 

with sy mbolic f orm. In 1952, E. Grosswald quoted that the linear Diophantine 

equation has distinct solutions; the set of  solution is the number of  partitions of 

n. This paper prov es theorem 1 with the help of  certain restrictions. In 1965, 
Godf rey  Harold Hardy  and E. M. Wright stated that the ‘Conv ergence Theorem’  

conv erges inside the unit circle. Theorem 2 has been prov ed here with easier  

mathematical calculations. In 1853, British mathematician Norman Macleod  

Ferrers explained a partition graphically  by  an array  of  dots or nodes. In this 
paper, graphic representation of  partitions, conjugate partitions and self -

conjugate partitions are described with the help of examples. 
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INTRODUCTION 

In this paper we have taken with the number of partitions of n with or without restrictions (Burn 
1964). We have showed how to find the number of partition of n by using MacMahon‟s table 
(MacMahon 2005). In 1742, Euler also stated the series in the enumeration of partitions. In this 
paper we discuss how to generate the Euler‟s use of series in the enumeration of partitions. In 
1952, Percy Alexander MacMahon also quoted the self-conjugate partitions of n. In this paper, 
MacMahon‟s self-conjugate partitions are explained with the help of array of dots or nodes. 

A partition of n is a division of n into any number of positive integral parts. Then the sum of 
the integral parts or summands is n. The order of the parts and arrangement in a division of n 
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are irrelevant and the parts are arranged in descending order. Usually a partition of n is 

denoted by Greek letters  ,  or  . We denote the number of partitions of n by P(n). It is 

convenient to define P(0) = 1 and , P(n) = 0 for negative n.  

At first glance, the material of partitions seems like mere a child‟s play. For example, 
consider the partitions of 4 as follows (Das and Mohajan 2015): 

4 = 3+1 = 2+2 = 2+1+1 = 1+1+1+1. 

Hence, there are 5 partitions of the number 4, i.e., P(4) = 5. Gottfried Willhelm Leibnitz 
(1646–1716) was among the first mathematicians who contribute to the development of 
partitions (Griffin 1954). But the greatest contributions in the early stages of the partitions 
theory were due to great mathematician Leonhard Euler (1707–1783) in the mid-eighteenth 
century and yet it continues to reveal its mysteries (Andrews 1971). 

We give some related definitions of  nP ,  nPm ,  nPo
,  nPd

 and generating 

function (Das and Mohajan 2014a). We describe the different types of partitions of n in 
symbolic form and explain how to find the numbers of partitions of n into parts with or 
without restrictions. We explain elaborately the linear Diophantine equation 

nakak  ...2211 , where 1k , 2k ... are non-negative integers, has distinct solutions, 

the set of solutions is the number of partitions of n and prove theorem 1 with the help of 

terms  nPm ,  nPm 1  and  mnPm  , and also prove theorem 2: The generating 

functions of the partitions converges inside the unit circle, i.e.,  ...1 2  xx

 ...1 42  xx  ...1 63  xx  … is convergent, if 1x . We define graphic 

representation of partitions of numbers from 1 to 5 and give a brief survey of conjugated 
partitions and self-conjugate partitions with numerical examples respectively. 

SOME RELATED DEFINITIONS AND D ISCUSSION 

Here we introduce some definitions related to the study following Andrews (1979), 
Barnard and Child (1967), Niven et al. (1991) and Das and Mohajan (2015). 

Partition: In number theory a partition of a positive integer n, also called an integer 
partition is a way of writing n as a sum of positive integers. Two sums that differ only in 

the order of their summands are considered the same partition. Let  ,...,...,, 21 raaaA   

be a finite or infinite set of positive integers. If naaa r  ...21 , with  Aar   (r = 1, 

2, 3,…). Then we say that the sum raaa  ...21  is a partition of n into parts belonging 

to the set A. So that, 3 + 2 + 1 is a partition of 6. If a partition contains p numbers, it is 
called a partition of n into p parts or shortly a p-partition of n. Hence, 9 = 4+2+1+1+1, and 
we can say that, 4+2+1+1+1 is a 5-partition of 9. The order of the parts is irrelevant, the 
parts to be arranged in descending order of magnitude. 

Now explain how to find all the partitions of 7 as follows:  

First take 7; then 6 allowed by 1; then 5 allowed by all the partitions of 2 (i.e., 2, 1+1); then 
4 allowed by all the partitions of 3 (i.e., 3, 2+1, 1+1+1);  then 3 allowed by all the partitions 
of 4, which contain no part greater than 3  (i.e., 3+1, 2+1+1, 1+1+1+1, 2+2); then 2 allowed 
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by all the partitions of 5, which contain no part greater than 2 (i.e., 2+2+1, 2+1+1+1, 
1+1+1+1+1); finally 1+1+1+1+1+1+1. Hence the complete set is;  

7, 6+1, 5+2, 5+1+1, 4+3, 4+2+1, 4+1+1+1, 3+3+1, 3+2+1+1, 3+1+1+1+1, 3+2+2, 2+2+2+1, 
2+2+1+1+1, 2+1+1+1+1+1, 1+1+1+1+1+1+1. 

The partition 3+3 +3+3+1 might instead be written in the form (3, 3, 3, 3, 1) or in the even 

more compact form  1,34  where the superscript denotes the number of repetitions of a 

term. Hence, 2+2+2+1, 2+1+1+1+1+1 and 1+1+1+1+1+1+1 can be written as, 123  , 
512   and 71  respectively. 

The numbers of partitions of n are as table 1. 

Table 1: The number of the partitions P(n) for n = 0,1, 2, 3, 4, 5. 
n Type of partitions P(n) 

0 0 1 
1 1 1 

2 2, 1+1 2 
3 3, 2+1, 1+1+1 3 
4 4, 3+1, 2+2, 2+1+1, 1+1+1+1 5 

5 5, 4+1, 3+2, 3+1+1, 2+2+1, 
2+1+1+1, 1+1+1+1+1 

7 

 

In the light of table 1 we can write an expression for P(n) as; 

            ...543210 5432  xPxPxPxPxPP  

....7.5.3.2.11 5432  xxxxx  

   ... ...1 ...1 ...1 63422  xxxxxx
 

      ... 1 1 1

1
32 xxx 

  

i
i x



 1

1

1
 

 





0

 
n

nxnP . 

In 1952, a major in the British Royal Artillery, Percy Alexander MacMahon used Euler‟s 
result to establish a table of P(n) for the first 200 values of n, which he found to be;  

P(200) = 3972999029388.  

He did not count the partitions one-by-one as follows: 

200 = 199+1 = 198+2 = 198+1+1 = 197+3 = . . . 

Instead, he used classical formal power series identities due to Euler. After a distinguished 
career with the Royal Artillery in Madras (India) and as an instructor at the Royal Military 
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Academy, Woolwich, MacMahon at the age of 58 went up to Cambridge University to 
pursue research in combinatorial number theory. He was elected a member of St. John‟s 
College and served as president of the London Mathematical Society and of the Royal 
Astronomical Society (Tattersall 1999).  

P(n) : The number of partitions of n, also called the partition function. In number theory, the 
partition function P(n) represents the number of possible partitions of a natural number n, 
which is to say the number of distinct ways of representing n as a sum of natural numbers 
(with order irrelevant). By convention we have P(0) = 1, P(n) = 0 for n negative. Indian great 
mathematician Srinivasa Ramanujan was perhaps the first mathematician who seriously 
investigate the properties of partition function P(n). He established a formula for P(n), one 
which describes the exceptional rate of growth suggested by the table 2  (Ono 2009). 
 
Table 2: The value of the partition function P(n) for n = 0,1,…,10000. 

n P(n) 

0 
 
1 
 
2 
 
3 
 
4 
 
5 
. 
. 
. 
50 
. 
. 
. 
100 
. 
. 
. 
200 
. 
. 
. 
1000 
 
. 
. 
. 
10000 

1 
 
1 
 
2 
 
3 
 
5 
 
7 
. 
. 
. 
204226 
. 
. 
. 
190569292 
. 
. 
. 
3972999029388 
. 
. 
. 
24061467864032622473692149727991 
or 2.40615×1031 
. 
. 
. 
361672513256 ... 906916435144  
or 3.61673×10106 
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As of June 2013, the largest known prime number that counts a number of partitions is 
P(120052058), with 12,198 decimal digits. 

Together with Hardy, Ramanujan gave a remarkable asymptotic formula in 1917 (Hardy 
and Ramanujan 1917a, b) as;  

   3/2exp
 34

1
n

n
nP    as n . 

Hardy and Ramanujan obtained an asymptotic expansion with this approximation as the 
first term; 

   





















 

 24

1

3

2
exp

2

1

1

n
kdn

d
nAknP

k

k







,   (1) 

where       
 





















1,;0

2
, exp

kmkm

k
k

mn
kmsinA  . 

Here, (m, n) = 1 implies that the sum should occur only over the values of m that are 
relatively prime to n. The function s(m, k) is a Dedekind sum. This Hardy and Ramanujan 
result was perfected by Hans Adolph Rademacher, a number theorist at the University of 
Pennsylvania, two decades later to obtain a formula which is so accurate that it can be 
used to compute individual values of P(n) (Rademacher 1943, 1973). Rademacher found an 
expression that, when rounded to the nearest integer, equal to P(n). In 1937, he was able to 
improve on Hardy and Ramanujan‟s results by providing a convergent series expression 
for P(n) as; 

   












































 


 24

1

3

2
sinh

24

1

1

2

1

1

n
k

n
dn

d
nAknP

k

k




, (2) 

where       
 





















1,;0

2
,exp

kmkm

k
k

mn
kmsinA  . 

He defined explicit functions  nTk  such that for all positive n;  

   





1k

k nTnP .                   (3) 

Hardy called it “one of the rare formulae which are both asymptotic and exact.” The 

function  nT1  alone gives the Hardy-Ramanujan asymptotic formula; 

  3/2 .
3 4

1
~ ne

n
nP 

 .      (4) 
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Moreover, Rademacher computed precisely the error incurred by truncating this series 
after Q terms. In particular, there exist explicit constants A and B such that (Ahlgren and 
Ono 2001); 

   
4/1

1

 
n

B
nTnP

nA

k

k 


.      (5) 

For n = 200, he found the approximation value; 

  200P 3972999029388.004, 

which is nicely compares with the exact value in the table 2. 

Techniques for implementing the Hardy-Ramanujan-Rademacher formula efficiently on a 
computer are discussed by Fredrik Johansson, where it is shown that P(n) can be computed 
in softly optimal time O(n0.5+ε), which is softly optimal since P(n) has Θ(n0.5) bits (Johansson 
2012). The largest value of the partition function computed exactly is P(1020), which has 
slightly more than 11 billion digits. In theory, P(1020) is therefore 100.5 ≈ 3.16 times more 
expensive to compute than P(1019). In fact, the computation of P(1020) only required 110 
hours and 130 GB of memory, comparable to the 100 hours and 150 GB used for the 
computation of P(1019) done in 2011, due to improvement of computer technology. P(1020) 
starting with 

18381765083448826436460575151963949703661288601871338187949218306809161793 

55851922605087258953579721...  

and ending with 

... 959766125017460247986152430226200195597077070328758246298447232570089919 

8905833521126231756788091448.  

To compute P(1021), which overflows around 40 billion digits, need to be developed the 
technology of the computer. Computation of P(1024) will be about 1.1 trillion digits! 
(Johansson 2014).  

 nPd
: The number of partitions of n into distinct parts. But  nPd

 is sometimes 

denoted by Q (n,*,*) where asterisk „*‟ means that no restriction is placed on the number or 

the nature of the parts (Das and Mohajan 2014b). 

The number of partitions of n into distinct parts is denoted by  nPd
. Some of such 

partitions are given in table 3. 
 

Table 3: The value of  nPd

 
for n = 1, 2, 3, 4. 

n Type of partitions  nPd
 

1 1 1 
2 2 1 

3 3, 2+1 2 
4 4, 3+1 2 
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We can write an expression for  nPd

 
as; 

        ... 4 3 2 11 432  xPxPxPxP dddd
 

....2.2.1.11 432  xxxx  

    ... 1 1 1 32 xxx 
 

 n

n

x




1
1

 

 





1

 1
n

nd xnP . 

 nPo
:  The number of partitions of n into odd parts. Some of such partitions are given in table 4. 

 

Table 4: The value of  nPo

 
for n = 1, 2, 3, 4. 

n Type of partitions  nPo  

1 1 1 
2 1+1 1 

3 3, 1+1+1 2 
4 3+1, 1+1+1+1 2 

We can write an expression for  nPo

 
as; 

        ... 4 3 2 11 432  xPxPxPxP oooo
 

....2.2.1.11 432  xxxx  

      ... 1 1 1 

1
53 xxx 

  

 





1

 1
n

no xnP . 

 nPm : The number of partitions of n into parts no larger than m.  

The number of partitions of n having only the numbers 1 and/or 2 as parts is denoted by 

 nP2 . Some of such partitions are given in table 5. 
 

Table 5: The value of  nP2  for n = 1, 2, 3, 4. 

n Type of partitions  nP2  

1 1 1 

2 2, 1+1 2 
3 2+1, 1+1+1 2 
4 2+2, 2+1+1, 1+1+1+1 3 
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We can write an expression for  nP2  
as; 

        ... 4 3 2 11 4

2

3

2

2

22  xPxPxPxP  

....3.2.2.11 432  xxxx  

  ... ...1 ...1 422  xxxx
 

     ...  1 1 

1
2xx 

  

 





1

2  1
n

nxnP . 

We can define  nP2  
in another way as follows:  

The number of partitions of n into at most two parts is  nP2  and can be expressed as table 6.  

 

Table 6: The value of  nP2  for n = 1, 2, 3, 4. 

n Type of partitions  nP2  

1 1 1 
2 2, 1+1 2 

3 3, 2+1 2 
4 4, 3+1, 2+2 3 

We can write an expression for  nP2  
as; 

        ... 4 3 2 11 4

2

3

2

2

22  xPxPxPxP  

....3.2.2.11 432  xxxx  

  ... ...1 ...1 422  xxxx  

     ...  1 1 

1
2xx 

  

 





1

2  1
n

nxnP . 

That is, we can say  nP2  
is the number of partitions of n into parts not exceeding 2 or the 

number of partitions of n having only the numbers 1 and/or 2 as parts. 

The number of partitions of n having only the numbers 1, 2 and/or 3 as parts is denoted 

by  nP3 . Some of such partitions are given in table 7. 
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Table 7: The value of  nP3  
for n = 1, 2, 3, 4. 

n Type of partitions  nP3  

1 1 1 
2 2, 1+1 2 

3 3, 2+1, 1+1+1 3 
4 3+1, 2+2, 2+1+1, 1+1+1+1 4 

We can write an expression for  nP3  
as; 

        ... 4 3 2 11 4

3

3

3

2

33  xPxPxPxP  

....4.3.2.11 432  xxxx  

      ... 1 1 1 

1
32 xxx 

  

 





1

3  1
n

nxnP . 

We can define  nP3  
in another way as follows:  

The number of partitions of n into at most two parts is  nP3  and can be expressed as table 8.  

 

Table 8: The value of  nP3  for n = 1, 2, 3, 4. 

n Type of partitions  nP3  

1 1 1 

2 2, 1+1 2 
3 3, 2+1, 1+1+1 3 
4 4, 3+1, 2+2, 2+1+1 4 

We can write an expression for  nP3  as; 

        ... 4 3 2 11 4

3

3

3

2

33  xPxPxPxP  

....4.3.2.11 432  xxxx  

   ... ...1 ...1 ...1 63422  xxxxxx
 

      ... 1 1 1 

1
32 xxx 

  

 





1

3  1
n

nxnP . 
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Therefore, we can say  nP3  
is the number of partitions of n into parts not exceeding 3 or 

the number of partitions of n having only the numbers 1, 2 and/or 3 as parts. Generally we 

can say that  nPm  is the number of partitions of n into parts not exceeding m. Hence, 

       1 ... 1 1 1 

1
32 mxxxx 

 





1

 1
n

n

m xnP . 

GENERATING FUNCTION 

In mathematics, a generating function is a formal power series in one intermediate, whose 

coefficients encode information about a sequence of numbers nb
 
that is indexed by the 

natural numbers. Generating functions were first introduced by Abraham de Moivre in 
1730, in order to solve the general linear recurrence problem (Doubilet et al. 1972). Wilf 
(1994) defined the generating function as “A generating function is a clothesline on which we 
hang up a sequence of numbers for display.” 

The power series; 

  





1

1
n

n

n xbxf ,       (6) 

is called the generating function of the sequence nb . The generating function for P(n) 

was found by Leonhard Euler in 1742 and can be written as follows: 

 
i

i
n

n

x
xnP












1

1
 

1
0

 .                 (7) 

A partition of n may be represented graphically by an array of dots or nodes. The parts of 
a partition of n may be even positive integral parts, odd positive integral parts, distinct 
parts etc. i.e., the parts have various restrictions. A graceful tool in the study of partitions 
is the Ferrers diagram. The conjugate of a partition is obtained by interchanging the rows 
and the columns of the Ferrers diagram (discuss later). 

DIFFERENT TYPES OF PARTITIONS OF N  

The number of partitions in any type is denoted by a symbol of the form P(n, , ), where the 
number and the nature of the parts respectively indicated in the first and second places 
following n (Burn 1964, Hardy and Wright 1965). In the first place, p means that there are p 

parts and  , p means that the number of parts does not exceed p. In the second place, q 
means that the greatest number of parts is q and , q means that no part exceeds q. An 
asterisk „*‟ means that no restriction is placed on the number or the nature of the parts. If 

the parts are to be unequal, then Q is used instead of P. 

Thus, P(n, p, q) is the number of partitions of n into p parts, the greatest of which is q. 

  ,, pnP  is the number of partitions of n into p or any smaller number of parts.  

Q (n, *, ≤ q) is the number of partitions of n into unequal parts, none of which exceeds q. 

Here P(n, p, *) is the number of p-partitions of n. 
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Example 1: We shall find the number of partitions of 11 into 4 parts. The partitions of 11 
into 4 parts are 8+1+1+1, 7+2+1+1, 6+3+1+1, 6+2+2+1, 5+4+1+1, 5+2+2+2, 5+3+2+1, 
4+4+2+1, 4+3+2+2, 4+3+3+1, 3+3+3+2; and their number is 11. 

 P (11, 4, *) = 11.      (8) 

NUMBER OF PARTITIONS OF N INTO PARTS WITH OR WITHOUT RESTRICTIONS 

In this section we explain the number of partitions of n into parts with or without 
restrictions. Let (x) be a generating function, whose denominator is a product of infinite 

factors         ... , 1  , 1  , 1 32 xxx , and it can be written as follows;  

 
     


 ...  1 1 1

1
32 xxx

xf  

   ...  ...1 ...1 422  xxxx   

... 1175321 65432  xxxxxx   

But we have; P(1) = 1, P(2) = 2, P(3) = 3, P(4) = 5, P(5) = 7, P(6) = 11, …   

So the expansion can be written as: 

 
   ... 1 1

1
2xx

xf


  

          ... 543211 5432  xPxPxPxPxP  

=1+   n

n

xnP


1

 , it is convenient to define P(0) = 1. 

Therefore, P(n) is the coefficient of 
nx  in the expansion of  

   ... 1 1

1
2xx 

 and is the 

number of partitions of n into parts without restrictions. 

We have already observed each partition is completely determined by the set of non-

negative integers ... , ...,  , , 21 rkkk ; hence the number P(n) of partitions of n is precisely 

the number of distinct solutions of the linear Diophantine equation (Grosswald 1952);  

nakakak jj  ... ... 2211 ,   (9) 

where Aai   (the set of positive integers). We illustrate it with an example linear 

Diophantine equation (9); hence 11 a , 22 a , 33 a , … If n = 5 we can write from (9) 

as; 

5 5544332211  akakakakak  

55.4.3.2.1. 54321  kkkkk  
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Now, 0.1 + 0.2 + 0.3 + 0.4 + 1.5 = 5 has solution (0, 0, 0, 0, 1), 
1.1 + 0.2 + 0.3 + 1.4 + 0.5 = 5 has solution (1, 0, 0, 1, 0), 
0.1 + 1.2 + 1.3 + 0.4 + 0.5 = 5 has solution (0, 1, 1, 0, 0), 
2.1 + 0.2 + 1.3 + 0.4 + 0.5 = 5 has solution (2, 0, 1, 0, 0), 
1.1 + 2.2 + 0.3 + 0.4 + 0.5 = 5 has solution (1, 2, 0, 0, 0), 
3.1 + 1.2 + 0.3 + 0.4 + 0.5 = 5 has solution (3, 1, 0, 0, 0), and 
5. 1 + 0.2 + 0.3 + 0.4 + 0.5 = 5 has solution (5, 0, 0, 0, 0) 

and their corresponding partitions are; 5, 4+1, 3+2, 3+1+1, 2+2+1, 2+1+1+1, 1+1+1+1+1 

respectively. Hence we have P (5) = 7 solutions. In symbol;    15P ; where 

5 iiak , and  51i , Aai  ,  therefore  ,..., 21 aaA 
 
set of  positive integers, 

...  , , 21 kk  are non-negative integers. Generally we can conclude that,    1nP ; 

where nak ii  , and ni 1 , Aai  ,  therefore  ,..., 21 aaA 
 
set of  positive 

integers, ...  , , 21 kk  are non-negative integers. 

GENERATING FUNCTIONS 

Let  xfm  be a generating function, whose denominator is the product of the factors 

     mxxx  1 , ... , 1 , 1 2
, and it can be written as in the form; 

 
     mm

xxx
xf




1 ... 1 1

1
2

 

               ...  ...1 ...1 422  xxxx  ...1 2  mm xx   

                ... 211 2

21  xPxP  

           

  n

n

m xnP





1

 1 ,  

where  nPm  is the number of partitions of n into parts not exceeding m. From above 

expansions we have the following remarks and a theorem. 

Remark 1:    nPnPm  , if n  m. 

This is obtained from the definition of partition function P(n) and  nPm . 

Example 2: If n = 5 and m = 7. 

There are 7 partitions of 5 into parts with no restriction and these are given below: 

5, 4+1, 3+2, 3+1+1, 2+2+1, 2+1+1+1, 1+1+1+1+1. 

Thus the number of such partitions is, P(5) = 7. But we can say that the number of 
partitions of 5 into parts not exceeding 7 is equal to the number of partitions of 5 into parts 

not exceeding 5 and these partitions are shown above. Hence,     755 57  PP . 
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Thus,      555 57 PPP  . Generally we can write,    nPnPm  , if n  m. 

Remark 2:    nPnPm  , for all 0n . 

This is also obtained from the definition of partitions functions P(n) and  nPm .   

Example 3: If n = 6 and m = 4, there are 11 partitions of 6 into parts with no restriction and 
these are given below: 

6, 5+1, 4+2, 4+1+1, 3+3, 3+2+1, 3+1+1+1, 2+2+2, 2+2+1+1, 2+1+1+1+1, 1+1+1+1+1+1. 

Thus the number of such partitions is P(6) = 11. Again the number of partitions of 6 into 
parts none of which exceeds 4 is obtained as follows: 

4+2, 4+1+1, 3+3, 3+2+1, 3+1+1+1, 2+2+2, 2+2+1+1, 2+1+1+1+1, 1+1+1+1+1+1.  

So the number of such partitions is   964 P . From above two cases, we get, 

   664 PP  . 

Generally we can write;    nPnPm  , if m < n. 

If m  n,    nPnPm  , for all n > 0 and n  m > 1. 

Theorem 1:      mnPnPnP mmm  1 , if n  m > 1. 

Proof: We know that the partition of n counted by  nPm  either has or does not have a 

part equal to m. The partitions of the second sort are counted by  nPm 1 . The partitions of 

the first sort are obtained by adding the partitions, where as each partition of n–m into 

parts less than or equal to m, and there are  mnPm   in numbers. That is the sum of 

 nPm 1  and  mnPm   is equal to  nPm . If n = m the term   1mnPm  
counts the 

single partition. Therefore,  

     mnPnPnP mmm  1 , if n  m > 1.  ■ 

Example 4: If n = 8 and m = 3, the partitions of 8 into parts which do not exceed 3 are given 
below: 

3+3+2, 3+3+1+1, 3+2+1+1+1, 3+1+1+1+1+1, 3+2+2+1, 2+2+2+2, 2+2+2+1+1, 2+2+1+1+1+1, 
2+1+1+1+1+1+1, 1+1+1+1+1+1+1+1. 

Thus the number of such partitions is   1083 P . The partitions of 8 into parts, none of 

which exceeds 2 are given below: 

2+2+2+2, 2+2+2+1+1, 2+2+1+1+1+1, 2+1+1+1+1+1+1, 1+1+1+1+1+1+1+1. 

So, the number of such partitions is   582 P . Finally, the partitions of 5 into parts not 

exceeding 3 are given as follows: 

3+2, 3+1+1, 2+2+1, 2+1+1+1, 1+1+1+1+1.  
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So the number of such partitions is   553 P . 

From above three cases, we get; 

  1083 P  = 5 + 5 =    58 32 PP  . 

From above theorem, we can consider the following comparisons: 

i)       1mnPm , when m = n, there is just one partition of n with greatest part is m. 

ii)      0mnPm , then n < m, then    nPnP mm 1 . 

Now we introduce a theorem about convergence as follows: 

Theorem 2: The generating functions of the partition functions converge inside the unit 
circle. 

Proof: We know that; 
     ...  1 1 1

1
32 xxx 

 is a generating function of the partition 

function P(n) and it can be written as; 
     ...  1 1 1

1
32 xxx 

  n

n

xnP





0

 . The 

number of partitions of n with or without restrictions is a non-negative integer also the 
number of partitions can only decrease, if restrictions are added. The series; 

x

x
xxx

n
n




 

1

1
...1 12

, if  1x  and n , So 0nx , then the above 

series becomes; 

x
xx




1

1
...1 2

, which is convergent, if 1x . 

Hence the series ...1 2  xx  is convergent, if 1x  and when convergent, its sum is 

x1

1
 . Similarly we can easily verify that the series   ...1 ...1 422  xxxx  is 

also convergent, if 1x  and its sum is 
    1 1

1
2xx 

 . Thus we can say that the series; 

    ...  ...1 ...1 ...1 63422  xxxxxx  is convergent, if 1x  and 

when convergent its sum is equal to 
     ...  1 1 1

1
32 xxx 

. Hence, we can express that 

the generating functions of the partition functions converge inside the unit circle.  ■ 
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DIAGRAMMATIC REPRESENTATION OF PARTITIONS  

There are two common diagrammatic methods to represent partitions: i) Ferrers diagrams, 
named after Norman Macleod Ferrers, and ii) Young diagrams, named after the British 
mathematician Alfred Young. 

FERRERS DIAGRAM 

A partition of n can be represented graphically. In 1853, Norman Macleod Ferrers 
communicated to James Joseph Sylvester an ingenious method for representing partitions. 
Graphs of partitions were conceived by Ferrers and first appeared in print in a paper by J. J. 
Sylvester in 1853 (Sylvester 1882). A partition of n may be represented graphically by an array 
of dots or nodes. A graceful tool in the study of partitions is the Ferrers diagram. The conjugate 
of a partition is obtained by interchanging the rows and the columns of the Ferrers diagram. 

If 
raaan  ...21

, we may presume that 
raaa  ...21

. Then the graph of the 

partition is the array of points having 
1a  points in the top row, 

2a in the next row, and so 

on down to 
ra in the bottom row, 

●    ●    ●    ●    ●    ●   
●    ●    ●    ●    ●     
●    ●    ●    ●    ●     
●    ●  
●   
Hence, 6+5+5+2+1 = 19. 

Now we represent a list of Ferrers graph as follows: 

 
 
Conjugate Partitions 
Two partitions are said to be conjugate, when the graph of one is obtained by 
interchanging the rows and columns of the other (Andrews 1967). The columns of the 
graph  
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●   ●   ●   ●     
●   ●   ●    
●  
●  

give the partition 4+3+1+1. 

The rows of the same graph give the partition, 4+2+2+1. Interchanging rows and columns 
converts;   

●   ●   ●   ●   to   ●  ●   ●   ● 
●   ●               ●  ●   ●  
●   ●                    ●  
●                         ●               

such pairs of partitions are said to be conjugate. 
 
Self-Conjugate Partitions 

If a partition has no interchange the rows and corresponding columns, such partition is 
called the self-conjugate partition. 

Thus   ●   ●   ●  is a self-conjugate partition  
            ●   ●   ●  
            ●   ●   ●  

i.e.,     ●   ●   ●     is a partition of 9, which has no conjugate to any other partition of 9. 
             ●   ●   ● 
             ●   ●   ● 

Now we will set some examples of conjugate partitions or self-conjugate partitions. 

Example 5: There is a list of all the partitions of numbers up to 11, which are not conjugate 
to any other partition. 
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Example 6: Every odd number has at least one self-conjugate partition.  2n + 1 may be 
partitioned into 

(n + 1) + 
 times

1  ... 11
n

    

for which the graph is 

n nodes 
●   ●   ●  .  .   .    ●   
●   
. 
. 
. 

     n nodes           ●   
                              ●.   
Example 7: If a number has a self-conjugate partition, it must have at least one partition 
into distinct odd parts. 

Thus ●   ●   ●   ●   ●   ●     11 
 ●   ●   ●   ●                                 + 5 
 ●   ●   ●                                               + 1 
 ●   ●  
 ● 

●.   
Example 8: If a number has a partition into distinct odd parts, it must have a self-conjugate 
partition. The odd numbers each give L-shaped arrange as in Example 6 and if they are 
distinct and are fitted together in order of size as in Example 7, the resulting array is the 
graph of a partition. Since each part added is self-conjugate and is added to a self-
conjugate graph, the result is a self-conjugate graph. 

YOUNG DIAGRAM  

Young diagrams, named after the British mathematician Alfred Young, turn out to be 
extremely useful in the study of symmetric functions and group representation theory; in 
particular, filling the boxes of Young diagrams with numbers obeying various rules leads 
to a family of objects called Young tableaux, and these tableaux have combinatorial and 
representation-theoretic significance (Andrews 1976).  

Rather than representing a partition with dots, as in the Ferrers diagram, the Young 
diagram uses boxes or squares. Thus, the Young diagram for the partition 5 + 4 + 1 is, 

 

while the Ferrers diagram for the same partition is; 

●   ●   ●   ●   ● 
●   ●   ●   ●    
●    

http://en.wikipedia.org/wiki/File:Young_diagram_for_541_partition.svg
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as a type of shape made by above squares joined together, Young diagrams are a special 
kind of polymino (Josuat-Vergès 2010). 

RESTRICTED PARTITION FUNCTIONS 

We also discuss about the restricted partition functions which are also used in Euler‟s 

series in the enumeration of partitions. The generating function for  qpnP ,,  is of the 

form; 

    
 



















n

p

p

n

n

q
qpnPzx

zxzxzx 11
2

,,1
1 ... 1 1

1
.       (10) 

It is convenient to define   0,,  qpnP , if n < p. The coefficient  qpnP ,,  is the 

number of partitions of n into p parts, none of which exceeds q. 

 

Example 9: If q = 3, the above function becomes; 

    32 1 1 1

1

zxzxzx 
 

      ...21 432432322  zzzxzzzxzzxzx
 

 








 






n

p

p

n

n pnPzx
11

3,,1 . 

From (10) we have;  

 








 






n

p

p

n

n qpnPzx
11

,,1  

     qzxzxzx 


1 ... 1 1

1
2

    

 








 






n

p

p

n

n pqnPzx
11

,,1 . 

Equating the coefficient of x
n
z

p
 from both sides, we get the following remarks: 

 

Remark 3:    pqnPqpnP ,,,,  . 

If q  in (10), such as 0lim 


q

q
x , 1x  then (10) becomes; 
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    ... 1 1 1

1
32 zxzxzx 

 

      ...21 432432322  zzzxzzzxzzxzx
 

 








 






n

p

p

n

n pnPzx
11

,,1 .     (11) 

where the coefficient  ,, pnP  is the number of partitions of n into p parts. From (11) we 

have;   

 








 






n

p

p

n

n pnPzx
11

,,1
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Equating the coefficient of x
n
z

p
 from both sides, we get the following remark: 

 

Remark 4:    pnPpnP ,,,,  . 

Proof: We establish a one-to-one correspondence between the partitions enumerated by 

 ,, pnP  and those enumerated by  pnP ,, . Let paaan  ...21  be a partition 

of n into p-parts. We transfer this into a partition of n having largest part p and can 
represent a partition of 15 graphically by an array of dots or nodes such as,  

●   ●   ●   ●   ● 
●   ●   ●    

A ●   ●   ●    
●   ●    
●.    

The dots in a column correspond to a part. Thus A represents the partition 6+4+3+1+1 of 
15. We can also represent A by transposing rows and columns in which case it would 
represent the partition graphically as conjugate of A.  

●   ●   ●   ●   ●   ●    
●   ●   ●   ●    

B = Conjugate of A ●   ●   ●    
●    
●.    

The dots in a column correspond to a part, so that it represents the partition 5+3+3+2+1+1 of 
15. Such pair of partitions are said to be conjugate. The number of parts at the 1 st one portion is 
equal to the largest part of the 2nd one partition, so that our corresponding is one-to-one. 
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Conversely, we can represent the partition B = conjugate of A, by transposing rows and 
columns, in which case it would represent the same partition like A, so we can say that the 
largest part of the partition is equal to the number of parts of the partition, then our 
corresponding is onto, i.e., the number of partitions of n into p-parts is equal to the number 
of partitions of n having largest part p. Consequently, 

●   ●   ●   ●   ● 
●   ●   ●    

A ●   ●   ●    
●   ●    
●.                      

   pnPpnP ,,,,  .  ■ 

 

Example 10: The list of partitions of 8 into 4 parts is given below: 

5+1+1+1 = 4+2+1+1 = 3+3+1+1 = 3+2+2+1 = 2+2+2+2. 
The number of such partitions is 5, i.e., P(8, 4, *) = 5. 

Again the list of partitions of 8 having largest part 4 is given below: 

4+4 = 4+3+1 = 4+2+1+1 = 4+1+1+1+1 = 4+2+2. 

So the number of such partitions is 5, i.e., P(8, *, 4) = 5. 

Here, 4+4, 4+3+1, 4+2+1+1, 4+1+1+1+1, and 4+2+2 are the conjugate partitions of 2+2+2+2, 
3+2+2+1, 4+2+1+1, 5+1+1+1 and 3+3+1+1 respectively. Thus the number of partitions of 8 
into 4 parts is equal to the number of partitions of 8 into parts, the largest of which is 4 i.e., 

   4,,8,4,8  PP . 

Generally, we can say that the number of partitions of n into p parts is the same as the 
number of partitions of n having largest part p. The generating function for 

 qpnP  ,,  is of the form; 

    qzxzxzx  1 1 1

1
2

 

 








 






n

p

p

n

n qpnPzx
11

,,1     (12) 

where the coefficient  qpnP  ,,  is the number of partitions of n into p or any smaller 

number of parts, none of which exceeds q. 

 

Example 11: If q = 2 then the function (12) becomes; 

      1 1 1

1
2zxzxz 
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If  q  , such as 0lim 


q

q
x , 1x  then (12) becomes; 
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1
2zxzxz 
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n pnPzx                              (13) 

where the coefficient    ,, pnP  is the number of partitions of n into p or any smaller 

number of parts. From (13) we have; 
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Equating the coefficient of x
n
z

p
 from both sides, we get the following remark. 

 

Remark 5:     ,,,, ppnPpnP .                               

Again from (13) we have; 
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 from both sides, we get the following remark: 
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Remark 6:    .,,,, pnPpnP   

Proof: The generating function for  nPp  is; 

 
     pp

xxx
xf




1 ... 1 1

1
2

 

 





1

1
n

n

p xnP . 

Suppose that 10  x , so that the product is convergent. Now we consider the product; 

      ...1... ...1 ...1 ...1 263422  pp xxxxxxxx . 

Any term out of the 1st, 2nd, …, pth factors may be represented by; x , 2x , 3x ,…, px , 

where  ,...,,,  are any of the numbers 0, 1, 2, …, p. 

 Thus, 𝛼 = 0,  = 1,  = 2, the partition,  


  times2

332      

=2 + 2.3 is one partition of 8 and 𝛼 =1,  =2,  = 1,  

the partition; 

 3221
  times2

   

= 1+ 2.2 + 3 is also one of 8. 

If the product of these terms is 
nx , we have np   ...32 , which is not  

unique. Hence the coefficient of 
nx  in the product is the number of partitions in  

which n can be obtained by adding any representation of the numbers 1,2,…,p  

repetitions being allowed. Now the coefficient of 
nx  in the product is the number of  

partitions of n into at most p parts. 

But in remark 5 we have discussed that the number of partitions of n into p parts is equal 
to the number of partitions of n into parts, the largest of which is p. So we can say that the 
number of partitions of n into at most p parts is equal to the number of partitions of n into 
parts which do not exceed p. Hence, 

   pnPpnP  ,,,, . ■ 

CONCLUSION 

In this article, we have established the number P(n) of partitions of n is the number of 
distinct solutions of the linear Diophantine equation, where n is any positive integer. We 
have verified theorem 1 when n = 8 and m = 3, and have proved the theorem 2 with the 

help of convergence condition 1x . We have found a partition which has no 
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interchange the rows and corresponding columns; such a partition is called the self-
conjugate partition, and has established every odd number has at least one self-conjugate 
partition. We have provided some remarks and also set some examples to make the paper 
interesting to the readers. 
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